博客
关于我
曲奇饼问题
阅读量:751 次
发布时间:2019-03-22

本文共 707 字,大约阅读时间需要 2 分钟。

使用贝叶斯公式计算条件概率

案例背景

碗1和碗2各放30个香草曲奇饼和10个巧克力曲奇饼,分别与10个香草曲奇饼和10个巧克力曲奇饼。我们需要计算从碗1取出香草曲奇饼的概率。

通过贝叶斯定理,可以得到公式:[ P(B_1|V) = \frac{P(B_1) \cdot P(V|B_1)}{P(V)} ]

其中:

  • ( B_1 ):碗1。
  • ( V ):取出的是香草曲奇饼。

概率定义

  • ( P(B_1) = 0.5 )(碗1被选中的概率)。
  • ( P(V|B_1) = \frac{30}{40} = 0.75 )(从碗1中取到香草曲奇饼的概率)。
  • ( P(V) ):取到香草曲奇饼的总概率。
  • 计算总概率

    总样本空间为两个碗,每个碗有40个曲奇饼,总共80个曲奇饼。其中:

    • 香草曲奇饼总数:30(碗1) + 10(碗2)= 40个。
    • 巧克力曲奇饼总数:10(碗1) + 10(碗2)= 20个。

    因此:[ P(V) = \frac{40}{80} = 0.5 ]

    计算条件概率

    代入贝叶斯公式:[ P(B_1|V) = \frac{0.5 \cdot 0.75}{0.5} = 0.6 ]

    即,从碗1中取到香草曲奇饼的概率为60%。

    Python验证

    from thinkbayes import Pmfpmf = Pmf()pmf.Set('Bow1', 0.5)pmf.Set("Bow2", 0.5)pmf.Mult('Bow1', 0.75)pmf.Mult('Bow2', 0.5)pmf.Normalize()print(pmf.Prob('Bow1'))

    输出结果为:

    0.6

    验证结果正确,说明计算无误。

    转载地址:http://eigwk.baihongyu.com/

    你可能感兴趣的文章
    Navicat连接Oracle数据库以及Oracle library is not loaded的解决方法
    查看>>
    Navicat连接sqlserver提示:未发现数据源名并且未指定默认驱动程序
    查看>>
    navicat连接远程mysql数据库
    查看>>
    Navicat通过存储过程批量插入mysql数据
    查看>>
    Navicat(数据库可视化操作软件)安装、配置、测试
    查看>>
    navigationController
    查看>>
    NB-IOT使用LWM2M移动onenet基础通信套件对接之APN设置
    查看>>
    NBear简介与使用图解
    查看>>
    Vue过滤器_使用过滤器进行数据格式化操作---vue工作笔记0015
    查看>>
    Ncast盈可视 高清智能录播系统 IPSetup.php信息泄露+RCE漏洞复现(CVE-2024-0305)
    查看>>
    NCNN中的模型量化解决方案:源码阅读和原理解析
    查看>>
    NCNN源码学习(1):Mat详解
    查看>>
    nc命令详解
    查看>>
    NC综合漏洞利用工具
    查看>>
    ndarray 比 recarray 访问快吗?
    查看>>
    ndk-cmake
    查看>>
    NdkBootPicker 使用与安装指南
    查看>>
    ndk特定版本下载
    查看>>
    NDK编译错误expected specifier-qualifier-list before...
    查看>>
    Neat Stuff to Do in List Controls Using Custom Draw
    查看>>